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ABSTRACT

Objectives: Machine learning (ML) has the potential to facilitate “continual learning” in medicine, in which an

ML system continues to evolve in response to exposure to new data over time, even after being deployed in a

clinical setting. In this article, we provide a tutorial on the range of ethical issues raised by the use of such

“adaptive” ML systems in medicine that have, thus far, been neglected in the literature.

Target audience: The target audiences for this tutorial are the developers of ML AI systems, healthcare regula-

tors, the broader medical informatics community, and practicing clinicians.

Scope: Discussions of adaptive ML systems to date have overlooked the distinction between 2 sorts of variance

that such systems may exhibit—diachronic evolution (change over time) and synchronic variation (difference

between cotemporaneous instantiations of the algorithm at different sites)—and underestimated the signifi-

cance of the latter. We highlight the challenges that diachronic evolution and synchronic variation present for

the quality of patient care, informed consent, and equity, and discuss the complex ethical trade-offs involved in

the design of such systems.
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INTRODUCTION

Machine learning (ML) has the potential to facilitate “continual

learning” in medicine, in which an ML system continues to adapt

and evolve in response to exposure to new data over time, even after

being deployed in a clinical setting. Leveraging this “adaptive”

potential of medical ML could generate significant benefits for

patient health and well-being. Recent engagements with the ethical

issues generated by the use of adaptive ML systems in medicine have

typically been limited to discussions of “the update problem”: how

should systems that continue to change and evolve postregulatory

approval be regulated? In this article, we draw attention to an

important set of ethical issues raised by the use of adaptive ML

systems in medicine that have, thus far, been neglected and are

highly deserving of further attention.

Discussions of adaptive ML systems to date have overlooked the

distinction between 2 sorts of variance that such systems may

exhibit—diachronic evolution (change over time) and synchronic

variation (difference between cotemporaneous instantiations of the

algorithmic system at different sites)—and underestimated the sig-

nificance of the latter. Both diachronic evolution and synchronic

variation will complicate the hermeneutic task of clinicians in inter-

preting the outputs of AI systems, and will therefore pose significant

challenges to the process of securing informed consent to treatment.

Equity issues may occur where synchronic variation is permitted, as
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the quality of care may vary significantly across patients or between

hospitals. However, the decision as to whether to allow or eliminate

synchronic variation involves complex trade-offs between accuracy

and generalizability, as well as a number of other values, including

justice and nonmaleficence. In some contexts, preventing synchronic

variation from emerging may only be possible at the expense of the

wellbeing, and the quality of care available to, particular patients or

classes of patients. Designers and regulators of adaptive ML systems

will need to confront these issues if the potential benefits of adaptive

ML in medical care are to be realized.

ADAPTIVE MACHINE LEARNING IN MEDICINE

ML is a form of AI that involves “programming computers to opti-

mize a performance criterion using example data or past experience”.1

The application of ML in medicine could significantly improve the

delivery of medical care, and expand the availability of medical

knowledge and expertise, among other benefits.2–5 ML systems can be

either “locked” or “adaptive”. Locked ML systems have parameters

fixed prior to clinical deployment, and do not continue to learn from

new data over time. While, to date, regulatory approvals of medical

AI systems have been limited to locked systems the U.S. Food and

Drug Administration (FDA) is considering regulatory approval for

adaptive ML systems, which evolve as they are exposed to new data

(“continuous learning”), even after the system has been deployed in a

clinical setting.6,7 We will refer to these sorts of ML devices as (medi-

cal) adaptive machine learning system(s) (MAMLS).

The use of MAMLS could have a number of benefits for patients.

In some applications, MAMLS can continuously “tune” their algo-

rithms to individual patients’ physiology, along with any changes

that occur in a patient’s physiology over their lifetime, thereby con-

tributing to the realization of “personalised medicine”. The use of

ML to deliver personalized medicine is already being explored via

the combination of ML with a variety of other new and emerging

technologies.8 For example, ML-enabled wearables and implant-

ables have been developed to enable personalized identification of

ventricular arrythmias and hypoglycemic events for diabetic

patients, and also to predict the onset of seizures in patients with

drug-resistant epilepsy.9–12

Additionally, MAMLS could be trained on data collected from

particular cohorts of patients to tune their performance to the features

of the cohorts of each particular clinical site or institution.13 For

example, MAMLS could be used to predict risk of hospital readmis-

sion for outpatients, or to identify patients at a high-risk of heart

attack within particular communities.14 Some researchers are already

seeking to enable such site-specific training of medical ML systems by

making the source codes of their algorithms freely available online.15

THE UPDATE PROBLEM

While there has been some engagement with the ethical issues raised

by MAMLS, it has mostly been confined to discussions of “the

update problem”. Existing regulatory approaches in healthcare and

medicine were designed to address products that do not evolve over

time, such as pharmaceuticals. Consequently, the capacity for

ongoing evolution in MAMLS presents a serious challenge for regu-

lators. As Babic and coauthors have written: “After evaluating a

medical AI/ML technology and deeming it safe and effective, should

the regulator limit its authorization to market only the version of the

algorithm that was submitted, or permit marketing of an algorithm

that can learn and adapt to new conditions?”.16 If they approve

MAMLS, regulators may be exposing patients to risks that have

developed in the system postdeployment. However, restricting regu-

latory approvals to locked systems places a strong limit on the

potential benefits that ML could generate for patient health out-

comes.

In their recent Proposed Regulatory Framework for Modifica-

tions to ML-Based Software as a Medical Device (SaMD)6 and sub-

sequent Artificial Intelligence/Machine Learning (AI/ML)-Based

Software as a Medical Device Action Plan,7 the US FDA has

attempted to address the update problem. A key feature of the

FDA’s preferred approach is the requirement for manufacturers of

MAMLS to provide algorithmic change protocols (ACPs) as part of

their applications for premarket approval. ACPs are supposed to

outline how a MAMLS will change over time and what the limits of

these changes will be. They will also require manufacturers to state

how they will mitigate any risks that these changes will present. The

FDA suggests that this approach could allow MAMLS to be

approved and deployed in clinical settings without a need for

ongoing regulatory review.

A number of serious criticisms have been raised against the

FDA’s proposed framework.16,17 For instance, the proposal gives lit-

tle indication as to how the performance of MAMLS will be moni-

tored in practice, even suggesting that manufacturers could monitor

these systems themselves. We are sympathetic to many of the con-

cerns that have been expressed in the literature. However, we believe

that the current focus on regulatory challenges that MAMLS present

has led researchers to overlook the broader set of ethical issues that

the use of these systems in medicine will present.

TWO TYPES OF VARIATION: DIACHRONIC AND
SYNCHRONIC

The literature on the ethics of MAMLS is cognizant that these sys-

tems will evolve over time—a phenomenon that we shall call dia-

chronic evolution. As MAMLS continue learning from new data,

their parametric weightings will change from update to update.

They will respond differently to identical input data at different

times. Their accuracy and performance will evolve over time, for

better or worse. They may even adopt different classes of algorith-

mic bias as they continue to learn and evolve.

However, it is less often recognized that variation will emerge

between copies of a MAMLS that have been implemented across dif-

ferent sites.

Synchronic variation refers to the differences that will emerge

between copies of a MAMLS implemented at different sites or in dif-

ferent patients. MAMLS will be deployed across diverse clinical set-

tings with different data collection policies, organizational

procedures, user behaviors, data infrastructures, and patient demo-

graphics, each of which will affect the datasets upon which these

systems learn. Even small variations in the datasets on which an

algorithm learns can have significant effects on what it learns. If

each copy of a MAMLS learns from data collected from the site at

which it has been deployed, either exclusively, or even just to fine

tune its parameters after initial learning from a training dataset,

then these differences between site-specific datasets mean that copies

of a MAMLS deployed at different sites (or devices implanted in dif-

ferent individuals) are likely to diverge over time. Eventually, identi-

cal data entered into different copies of a MAMLS will likely cause

these systems to generate different outputs.

2 Journal of the American Medical Informatics Association, 2022, Vol. 00, No. 0
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Figure 1 illustrates the relation between these 2 types of varia-

tion.

Diachronic evolution alone would seem to require that regula-

tors monitor the evolution of each MAMLS over time and conduct

postmarket surveillance of the product’s performance, errors, and

instances of patient harm as it evolves. The possibility of synchronic

variation suggests that, in addition regulators should monitor each

copy of a MAMLS, due to the gradual divergence that may occur

between each copy of the product over time. The additional admin-

istrative burden that this could entail would be expensive and time-

consuming for both manufacturers, purchasers, and regulatory agen-

cies. Moreover, the more instantiations there are, the more likely it

is that one will go catastrophically wrong and undercut support for

all of them. These factors could increase costs for manufacturers

and chill the incentive to develop these systems in the first place.

FEDERATED LEARNING TO PREVENT
SYNCHRONIC VARIATION

In some cases, however, manufacturers may have the option of elim-

inating synchronic variation entirely via the adoption of “federated

learning” (FL), which “involves training statistical models over

remote devices or siloed data centers, such as mobile phones or hos-

pitals, while keeping data localized”.18 To date, interest in FL in

healthcare has mostly been driven by their potential to maintain pri-

vacy.4,19 However, if FL can be used to train MAMLS, they could

allow each iteration of a MAMLS to learn on the same pool of data,

which would preclude the emergence of synchronic variation.

Eliminating synchronic variation would have a number of bene-

fits for stakeholders. For instance, it would reduce the burden of reg-

ulators and manufacturers by eliminating divergence and variation

between copies of a MAML and thus the risk that different copies

might require distinct regulatory evaluation and approval. In some

cases, it might improve the generalizability of MAMLS by enabling

these systems to learn from larger, more heterogenous datasets col-

lected across multiple clinical sites. As we will argue below, it could

also eliminate the potential for inequities in standards of care to

emerge across clinical sites.

However, the decision to allow or eliminate synchronic variation

carries practical trade-offs (along with some ethical trade-offs: see

“Costs to particular cohorts” in the following section). Implement-

ing FL in MAMLS may require updates to existing digital infrastruc-

ture that may be prohibitively expensive for many clinics and

hospitals. Federated learning, for instance, “require[s] investment in

on-premise computing infrastructure or private-cloud service provi-

sion and adherence to standardised and synoptic data formats so

that ML models can be trained and evaluated seamlessly”.20 More-

over, if data collected at one hospital cannot easily be transferred to

new sites without first being processed, this processing may itself

introduce a form of synchronic variation by virtue of adding differ-

ent extra layers of code to the AI system at different sites. Where

implanted medical devices include MAMLS, FL will only be possible

if these devices can transmit the result of training on local data back

to other instantiations of the learning algorithm and can update the

local algorithm in the light of the results of the training of other ver-

sions there-of, which increases the risk to patient privacy and of

iatrogenic harm, including as a result of hacking.

In an important set of cases, then, users will face a choice

between either allowing synchronic variation to occur, or not using

MAMLS at all.
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Figure 1. Schematic representation of diachronic evolution (y-axis) and synchronic variation (x-axis) in a MAMLS deployed across 2 sites.
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ETHICAL CONSIDERATIONS

The deployment and use of MAMLS generates a number of ethical

concerns relating to the quality of patient care and doctor–patient

relations, informed consent to treatment, threats to health equity

and problems of obsolescence, and harms to particular cohorts of

patients.

Impact on quality of care
The use of MAMLS presents a number of risks to the quality of

patient care.

Left to continue learning postdeployment MAMLS may adopt

erroneous and potentially dangerous associations from new input

data that could jeopardize patient health. In one well-known case, a

mortality-prediction ML system learned to classify asthmatic

patients presenting to the emergency department with pneumonia as

“low risk” due to a true but misleading correlation in the training

data.21 If operationalized, the system would have presented critical

risks to patient safety. With MAMLS there is a risk that such errors

will emerge postdeployment as a result the process of continual

learning. Moreover, MAMLS are susceptible to the phenomenon of

“catastrophic forgetting”, in which a MAMLS overwrites what it

has previously learned during the process of learning from new data,

leading to sudden poor performance that could significantly jeop-

ardize the quality of physician judgments and the health and safety

of patients.22 Finally, MAMLS are susceptible to hacking and adver-

sarial attacks, including by “data poisoning”. In locked ML systems,

adversarial attacks can only affect individual outputs.23 In MAMLS,

however, adversarial attacks could interfere with the performance of

the system (or systems) in all future uses. These possibilities high-

light the urgency of the “update problem”.

Challenges to clinical interpretation
Furthermore, achieving downstream benefits from the use of ML in

medicine is critically dependent upon clinicians’ ability to under-

stand, interpret, and act on the outputs of these systems.24 For

instance, clinicians must decide how much epistemic weight they

ought to give the outputs of algorithms in their clinical decision-

making. Placing too much or too little weight on the outputs of an

algorithmic system can result in patient harm, even death. An exam-

ple of clinicians placing too little epistemic weight in the output(s) of

an algorithmic system is “alert fatigue”, which refers to “declining

clinician responsiveness to a particular type of alert as the clinician

is repeatedly exposed to that alert over a period of time, gradually

becoming ‘fatigued’ or desensitized to it”.25 Alert fatigue can lead

clinicians to ignore important alerts, potentially resulting in patient

harm or death (for a particularly egregious instance of patient harm

caused by alert fatigue, see reference 26). An example of patient

harm caused by clinicians placing too much epistemic weight in the

outputs of an algorithmic system is “automation bias”, which

“refers to errors resulting from the use of automated cues as a heu-

ristic replacement for vigilant information seeking and proc-

essing”.27 The presence of diachronic evolution and synchronic

variation in MAMLS will pose a significant challenge to clinicians

being able to reliably interpret and act upon the outputs of these sys-

tems. If every time clinicians encounter a MAMLS it is a subtly (or

occasionally not so subtly) different system—different both to pre-

vious iterations, and between patients and across clinical sites—it

may be exceedingly difficult for them to be confident how it is func-

tioning and how much they should trust it. These challenges are fur-

ther complicated by the opacity of ML systems, which make it

difficult to understand how or why a system works or has produced

a certain output.28

Admittedly, that the performance of MAMLS will change over

time, and will differ between sites and/or patients, does not in-and-

of-itself distinguish them radically from other systems with which

clinicians must engage in the course of their professional practice.

Clinicians who work across different institutions often have to take

account of differences in the way things are done, or particular devi-

ces are set up, in each institution. The fact that diagnostic tools and

treatments are evolving all the time is, after all, why continuing med-

ical education is so important. However, the key virtue of MAMLS

is their ability to continuously improve at a faster rate than existing

diagnostic tools without human intervention or oversight. The speed

with which MAMLS evolve may outpace clinician’s abilities to

adapt to these changes.

Impact on doctor–patient relations
Where clinicians make use of MAMLS for the purpose of clinical

decision-support, both diachronic evolution and synchronic varia-

tion will pose challenges to communication between doctors and

patients and reduce the capacity for shared decision making. If clini-

cians are themselves not able to understand precisely what has

changed between each update to a MAMLS system, or how, pre-

cisely, the system they are dealing with at this site, or in this patient,

differs from other iterations, they may struggle to identify and

explain the factors that are casually relevant to their ultimate deci-

sion about a diagnosis and/or treatment plan. In particular, they

may find it difficult to provide the patient with counter factual infor-

mation that might be relevant to shared decision-making about

treatment. Importantly, this effect may occur even if the clinician is

in fact justified—and can explain to the patient that they are justi-

fied—in relying on the MAMLS because of its superior accuracy rel-

ative to the alternatives.

It is sometimes argued that the use of AI and ML could allow

clinicians more time to spend with their patients.29,30 However, the

various tasks associated with maintaining AI and ML systems could

equally lead to increased administrative burdens for clinicians that

could further interfere with the quality of care and empathy in the

doctor–patient relationship.31,32 This risk seems particularly acute

in the case of MAMLS, because healthcare institutions will likely

need to significantly expand the scope of their data collection poli-

cies and procedures to be able to provide the continuous stream of

new data that training MAMLS will require.

The potential of MAMLS to evolve over time may also be

expected to exacerbate the issues related to computers being “the

third party in the room” in clinical consultations. As Christopher

Pearce and others have noted, the introduction of computers into

healthcare settings has transformed what was originally a dyadic

relationship, between the doctor and patient into a triadic relation-

ship between the doctor, the patient, and the doctor’s computer.33,34

Both doctor and patient now spend some—perhaps even much—of

their time “together” looking at and relating to the computer: infor-

mation provided by the computer shapes the course of the consulta-

tion. If the doctor’s computer is—or accesses—a MAMLS then this

will add an important temporal dimension to the relationship

between the doctor and the computer and the patient and the com-

puter. What the computer “says” may change over time. This alone

may be sufficient to draw more of the doctor’s and the patient’s

attention to the computer. However, the fact that the operations

and the outputs of the MAMLS may change also opens up the possi-
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bility that doctors will become involved in trying to manage or

shape those changes in order to meet their, and their patients,

expectations. One might imagine clinicians trying to influence the

evolution of the MAMLS by curating the data that they input into

it, in the same way many of us now try to manage the recommenda-

tion engines of Spotify or Netflix. Clinicians’ relationships with

MAMLS will evolve along with the MAMLS and we should expect

that at least some clinicians may want to be active in shaping the

former evolution—and, thus, the latter.

Challenges to informed consent
Insofar as it is not typically considered necessary for clinicians to

inform patients about the technologies that they have used to inform

their clinical recommendations, the use of MAMLS for decision sup-

port is unlikely to have implications for informed consent. However,

where MAMLS assist in the delivery of medical treatment (eg,

robotic surgery or, hypothetically, AI-guided radiation therapy)

their nature may well be relevant to the process of securing informed

consent to treatment.

The use of ML in treatments already involves new risks that may

need to be disclosed to patients, such as the threat of cyberat-

tack.23,35 Adaptive learning will introduce additional risks, includ-

ing the risk of catastrophic forgetting and of algorithmic biases

developing postdeployment, which may need to be disclosed to

patients in order to allow them to make an informed decision of the

use of such systems. Moreover, the potential of MAMLS to evolve

and to differ between sites and patients means that the provision of

general or “standard” information about treatments guided by

MAMLS may not be sufficient to secure informed consent to treat-

ment. A patient who returns to a medical clinic for treatment involv-

ing a MAMLS after some time will undergo treatment that may

differ subtly, or even significantly, from that they received in their

previous visit. Similarly, a patient who moves from one hospital to

another, which has implemented a version of the same MAMLS,

may be subject to different levels of risk—indeed, different risks—in

each location. Fully informed consent, then, may require that

patients are made aware of the risks associated with treatment by

the particular MAMLS that is involved in their treatment. However,

diachronic evolution and synchronic variation, coupled with the

characteristic opacity of ML systems, mean that it may not always

be possible for manufacturers to provide information about the spe-

cific risks associated with a particular iteration of a MAMLS.

Equity and obsolescence
One hopes that, with appropriate regulation, the continuous learn-

ing of MAMLS will lead to improved outcomes for patients over

time. In-and-of itself, then, diachronic evolution in the performance

of MAMLS should not raise issues of equity.

The ability of MAMLS to adapt to specific patient cohorts and

improve the performance of the system among these cohorts has the

potential to promote health equity by better serving the needs of

minority groups that are often under-represented in the training

data used to train locked models. However, where synchronic varia-

tion is permitted, it is also possible that the difference in the per-

formance of MAMLS at different sites or in different patients may

become so pronounced as to generate serious issues of justice in rela-

tion to the quality of healthcare available to different cohorts. Par-

ticular instantiations of a MAMLS may have biases that are more

pronounced, more numerous, or more consequential within the

patient cohort that they serve, than other iterations of the product

deployed at different sites. Moreover, it is possible that some itera-

tions of a MAMLS product may become stuck in local minima dur-

ing the learning process, such that their performance stagnates while

others continue to improve. In some cases, these performance dis-

parities may become so large that the MAMLS available to particu-

lar sites/patients are effectively obsolete.

Costs to particular cohorts
The challenges that synchronic variation presents for equity may

serve as another incentive for manufacturers and regulators to try to

eliminate synchronic variation. However, although FL is likely to

enhance the generalizability of MAMLS, as Futoma and coauthors

have noted, “the demand for universal rules—generalisability—

often results in [ML] systems that sacrifice strong performance at a

single site for systems with mediocre or poor performance at many

sites” [reference 36, see also reference 37]. Disease, symptoms, side-

effects, and so on occur with differing probabilities across lines of

race, sex, gender, ability, and so on, and the application of a one-

size-fits-all model across different subpopulations will often result in

a system having differing utility for members of different cohort.

Indeed, it can result in a model that is suboptimal for all groups, or

optimal only for the dominant subpopulation—a phenomenon

known as “aggregation bias”.38 For this reason, the decision to pre-

vent synchronic variation in MAMLS involves an ethical and politi-

cal trade-off between prioritizing the health and well-being of

dominant groups and the prioritization of the health and well-being

of marginalized groups.

CONCLUSION

We have argued that the implementation of MAMLS raises a num-

ber of challenging ethical issues that have thus far received little

attention. We distinguished between 2 sorts of variance that such

systems may exhibit—diachronic evolution (change over time) and

synchronic variation (difference between cotemporaneous instantia-

tions of the algorithm at different sites). Diachronic evolution com-

plicates the hermeneutic task of clinicians and could interfere with

downstream patient health benefits. Maintaining the digital infra-

structure and data collection requirements necessary to enable con-

tinual learning in MAMLS may generate greater administrative

burdens for human physicians, resulting in compromised relations

of care and empathy between doctors and patients. Synchronic var-

iation has the potential to generate inequities between clinical sites

using the same MAMLS. The choice between site-specific and FL

approaches involves a trade-off between pursuing generalizability or

local impact, and may be to the detriment of particular cohorts of

patients. These ethical issues require sustained attention if we are to

realize the benefits of continuous learning in medicine.
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9. Porumb M, Stranges S, Pescapè A, Pecchia L. Precision medicine and arti-

ficial intelligence: a pilot study on deep learning for hypoglycemic events

detection based on ECG. Sci Rep 2020; 10 (1): 1–16.

10. Jia Z, Wang Z, Hong F, Ping L, Shi Y, Hu J. Personalized deep learning

for ventricular arrhythmias detection on medical loT systems. In: IEEE/

ACM international conference on computer-aided design, Digest of Tech-

nical Papers, ICCAD; November 2020.

11. Cook MJ, O’Brien TJ, Berkovic SF, et al. Prediction of seizure likelihood

with a long-term, implanted seizure advisory system in patients with drug-

resistant epilepsy: a first-in-man study. Lancet Neurol 2013; 12 (6): 563–71.

12. Pinto MF, Leal A, Lopes F, Dourado A, Martins P, Teixeira CA. A person-

alized and evolutionary algorithm for interpretable EEG epilepsy seizure

prediction. Sci Rep 2021; 11 (1): 1–12.

13. Ong CS, Reinertsen E, Sun H, et al. Prediction of operative mortality for

patients undergoing cardiac surgical procedures without established risk

scores. J Thoracic Cardiovasc Surg 2021; doi: 10.1016/

j.jtcvs.2021.09.010.

14. Yu S, Farooq F, van Esbroeck A, Fung G, Anand V, Krishnapuram B. Pre-

dicting readmission risk with institution-specific prediction models. Artif

Intell Med 2015; 65 (2): 89–96.

15. Hong JC, Niedzwiecki D, Palta M, Tenenbaum JD. Predicting emergency

visits and hospital admissions during radiation and chemoradiation: an

internally validated pretreatment machine learning algorithm. JCO Clin

Cancer Inform 2018; (2): 1–11.

16. Babic B, Gerke S, Evgeniou T, Glenn Cohen I. Algorithms on regulatory

lockdown in medicine. Science 2019; 366 (6470): 1202–4.

17. Gerke S, Babic B, Evgeniou T, Cohen IG. The need for a system view to

regulate artificial intelligence/machine learning-based software as medical

device. NPJ Digit Med 2020; 3 (1): 1–4.

18. Li T, Sahu AK, Talwalkar A, Smith V. Federated learning: challenges,

methods, and future directions. IEEE Signal Process Mag 2020; 37 (3):

50–60.

19. Usynin D, Ziller A, Makowski M, et al. Adversarial interference and its

mitigations in privacy-preserving collaborative machine learning. Nat

Mach Intell 2021; 3 (9): 749–58.

20. Rieke N, Hancox J, Li W, et al. The future of digital health with federated

learning. NPJ Digit Med 2020; 3 (1): 1–7.

21. Caruana R, Lou Y, Microsoft JG, Koch P, Sturm M, Elhadad N. Intelli-

gible models for health care: predicting pneumonia risk and hospital 30-

day readmission. In: proceedings of the 21th ACM SIGKDD international

conference on knowledge discovery and data mining. New York, NY:

ACM; 2015; pp. 1721–30. http://dx.doi.org/10.1145/2783258.2788613.

22. van de Ven GM, Tolias AS. Three scenarios for continual learning. arXi-

v.org 2019; 1904.07734: 1–18.

23. Finlayson SG, Bowers JD, Ito J, Zittrain JL, Beam AL, Kohane IS. Adver-

sarial attacks on medical machine learning. Science (1979) 2019;

363(6433): 1287–90.

24. Hatherley J, Sparrow R, Howard M. The virtues of interpretable medical

AI. Camb Q Healthc Ethics 2022; doi: 10.1017/S0963180122000305.

25. Embi PJ, Leonard AC. Evaluating alert fatigue over time to EHR-based

clinical trial alerts: findings from a randomized controlled study. J Am

Med Inform Assoc 2012; 19 (E1): e145–48.

26. Wachter RM. The Digital Doctor: Hope Hype, and Harm at the Dawn of

Medicine’s Computer Age. New York, NY: McGraw-Hill Education;

2015.

27. Mosier K, Skitka LJ, Heers S, Burdick M. Automation bias: decision mak-

ing and performance in high-tech cockpits. Int J Aviat Psychol 1997; 8 (1):

47–63.

28. Hatherley JJ. Limits of trust in medical AI. J Med Ethics 2020; 46 (7):

478–81.

29. Topol EJ. Deep Medicine: How Artificial Intelligence Can Make Health-

care Human Again. New York, NY: Basic Books; 2019.

30. Israni ST, Verghese A. Humanizing artificial intelligence. JAMA 2019;

321 (1): 29–30.

31. Sparrow R, Hatherley J. High hopes for “Deep Medicine”? AI, economics,

and the future of care. Hastings Cent Rep 2020; 50 (1): 14–7.

32. Maddox TM, Rumsfeld JS, Payne PRO. Questions for artificial intelli-

gence in health care. JAMA 2019; 321 (1): 31–2.

33. Pearce C, Arnold M, Phillips C, Trumble S, Dwan K. The patient and the

computer in the primary care consultation. J Am Med Inform Assoc 2011;

18 (2): 138–42.

34. Pearce C, Sandoval M. Consulting with a computer: new frontiers. Aust J

Gen Pract 2020; 49 (9): 612–4.

35. Kiener M. Artificial intelligence in medicine and the disclosure of risks. AI

Soc 2021; 36 (3): 705–13.

36. Futoma J, Simons M, Panch T, Doshi-Velez F, Celi LA. The myth of gener-

alisability in clinical research and machine learning in health care. Lancet

Digit Health 2020; 2 (9): e489–92.

37. Burns ML, Kheterpal S. Machine learning comes of age local impact ver-

sus national generalizability. Anesthesiology 2020; 132 (5): 939–41.

38. Suresh H, Guttag JV. A framework for understanding unintended conse-

quences of machine learning. arXiv.org 2019; 1901.10002. http://arxiv.

org/abs/1901.10002

6 Journal of the American Medical Informatics Association, 2022, Vol. 00, No. 0

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/advance-article/doi/10.1093/jam
ia/ocac218/6827875 by Light H

orse and Field Artillery M
useum

 user on 16 N
ovem

ber 2022

http://dx.doi.org/10.1145/2783258.2788613
http://arxiv.org/abs/1901.10002
http://arxiv.org/abs/1901.10002



